3.197 \(\int \frac{\cos (c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=158 \[ \frac{(9 A+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{3 A \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac{(3 A+C) \sin (c+d x)}{2 a d \sqrt{a \sec (c+d x)+a}}-\frac{(A+C) \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(-3*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + ((9*A + C)*ArcTan[(Sqrt[a]*Tan[c
+ d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Sin[c + d*x])/(2*d*(a + a*Sec[c
+ d*x])^(3/2)) + ((3*A + C)*Sin[c + d*x])/(2*a*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.386058, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4085, 4022, 3920, 3774, 203, 3795} \[ \frac{(9 A+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{3 A \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac{(3 A+C) \sin (c+d x)}{2 a d \sqrt{a \sec (c+d x)+a}}-\frac{(A+C) \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-3*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + ((9*A + C)*ArcTan[(Sqrt[a]*Tan[c
+ d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Sin[c + d*x])/(2*d*(a + a*Sec[c
+ d*x])^(3/2)) + ((3*A + C)*Sin[c + d*x])/(2*a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 4085

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(
2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b*(
2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x]
&& EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac{(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{\int \frac{\cos (c+d x) \left (-a (3 A+C)+\frac{1}{2} a (3 A-C) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}-\frac{\int \frac{3 a^2 A-\frac{1}{2} a^2 (3 A+C) \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^3}\\ &=-\frac{(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}-\frac{(3 A) \int \sqrt{a+a \sec (c+d x)} \, dx}{2 a^2}+\frac{(9 A+C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}+\frac{(3 A) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}-\frac{(9 A+C) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=-\frac{3 A \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{(9 A+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.57668, size = 167, normalized size = 1.06 \[ -\frac{\tan \left (\frac{1}{2} (c+d x)\right ) \left (2 \sin ^2\left (\frac{1}{2} (c+d x)\right ) (2 A \cos (c+d x)+3 A+C)+\sqrt{2} (9 A+C) \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)-1} \tan ^{-1}\left (\frac{\sqrt{\sec (c+d x)-1}}{\sqrt{2}}\right )-12 A \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)-1} \tan ^{-1}\left (\sqrt{\sec (c+d x)-1}\right )\right )}{2 a d (\cos (c+d x)-1) \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-((-12*A*ArcTan[Sqrt[-1 + Sec[c + d*x]]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] + Sqrt[2]*(9*A + C)*ArcTan
[Sqrt[-1 + Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] + 2*(3*A + C + 2*A*Cos[c + d*x])*
Sin[(c + d*x)/2]^2)*Tan[(c + d*x)/2])/(2*a*d*(-1 + Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.333, size = 561, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/4/d/a^2*(-1+cos(d*x+c))*(6*A*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*cos(d*x+c)+6*A*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+9*A*cos(d*x
+c)*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(
d*x+c)-1)/sin(d*x+c))+C*cos(d*x+c)*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))+9*A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)-4*A*cos(d*x+c)^3+C*(-2*cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c
)-2*A*cos(d*x+c)^2-2*C*cos(d*x+c)^2+6*A*cos(d*x+c)+2*C*cos(d*x+c))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x
+c)^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 7.98163, size = 1486, normalized size = 9.41 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(2)*((9*A + C)*cos(d*x + c)^2 + 2*(9*A + C)*cos(d*x + c) + 9*A + C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) -
a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 12*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos
(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) -
a)/(cos(d*x + c) + 1)) - 4*(2*A*cos(d*x + c)^2 + (3*A + C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c
))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*((9*A + C)*cos(d*x + c)^
2 + 2*(9*A + C)*cos(d*x + c) + 9*A + C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x
 + c)/(sqrt(a)*sin(d*x + c))) - 12*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x +
c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*(2*A*cos(d*x + c)^2 + (3*A + C)*cos(d*x + c))*s
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*cos(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError